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Effects of the non-equilibrium
condensation of vapour on the pressure wave produced
by the collapse of a bubble in a liquid
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Department of Mechanical Engineering, Kyoto University, Kyoto

(Received 22 December 1978 and in revised form 2 July 1979)

Analytical and numerical analyses have been made of the physical behaviour of a
collapsing bubble in a liquid. The mathematical formulation takes into account the
effects of compressibility of the liquid, non-equilibrium condensation of the vapour,
heat conduction and the temperature discontinuity at the phase interface. Numerical
solutions for the collapse of the bubble are obtained beyond the time when the bubble
reaches its minimum radius up to the stage when a pressure wave forms and propagates
outward into the liquid. The numerical results indicate that evaporation and conden-
sation strongly influence the dynamical behaviour of the bubble.

In addition, the propagation of the stress wave, both in a solid and a liquid, due to
the collapse of the bubble has been observed by means of the dynamic photoelasticity.
It is clearly demonstrated that the stress wave in a photoelastic specimen is caused by
impact of the pressure wave radiated from the bubble.

1. Introduction

The main interest in cavitation bubble dynamics arises from the destructive action
due to the collapse of bubbles in liquids near solid boundaries. Most of the theoretical
and experimental efforts have been attempted in order to understand the mechanism
by which the violent action of collapsing bubbles is brought to bear on the boundary.

Until now two different mechanisms have been theorized as the source of cavitation
damage. One is that shock waves are radiated into the liquid when the collapsing
motion of spherical bubbles is arrested (Hickling & Plesset 1964; Tomita & Shima
1977); in this case, the bubbles are supposed to contain only a small amount of non-
condensable gas. The other mechanism is the impingement of liquid jets formed on
bubbles in the neighbourhood of solid surfaces. This idea was first put forward by
Kornfeld & Suvorov (1944). Then Naudé & Ellis (1961) and Plesset & Chapman
(1971) showed that liquid jets may form on empty bubbles collapsing in the neighbour-
hood of solid boundaries. Recently Shima & Nakajima (1977) studied the problem of
the collapse of a gaseous bubble attached to the solid boundary. They concluded that
the cushioning effect of the internal gas weakened the jet or caused the bubble to
rebound without the liquid jet.

The cushioning effect may be expected even for a purely vaporous bubble. Evapora-
tion and condensation take place at a finite rate. If this rate is not high enough to keep
up with the reducing rate of volume of the cavity, the vapour in the cavity will behave
like a non-condensable gas. This so-called non-equilibrium effect on condensation will
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play an important role in the final collapsing stages when the inward radial velocity of
the bubble wall increases rapidly (Plesset 1949; Zwick & Plesset 1955; Theofanus et
al. 1969; Mitchell & Hammitt 1974). One of the objects of the present study is to eluci-
date the behaviours of the bubble collapse and the resulting pressure waves. In §§2,
3 and 4, the theoretical and numerical analyses will be made taking account of the
effects of evaporation and condensation and temperature discontinuity at the inter-
face, heat conduction inside the bubble and in the surrounding liquid, and compres-
sibility of the liquid.

On the other hand, experiments on the collapse of bubbles have been performed by
numerous investigators (Jones & Edwards 1960; Naudé & Ellis 1961; Kuttruff 1962;
Benjamin & Ellis 1966; Kling & Hammitt 1972; Lauterborn & Bolle 1975). Jones &
Edwards observed shock waves radiated into the liquid at the instant of the collapse
of spark-induced bubbles. Kuttruff observed not only shock waves, but also flashes of
sonoluminescent light from the ultrasonic cavitation. The others showed that the
jets formed on bubbles collapsing near solid boundaries. Ebeling & Lauterborn (1977)
observed, by cinematic holography, shock waves emanating from collapsing bubbles
generated by laser pulses. Recently, by using a water shock tube, Fujikawa & Aka-
matsu (1975, 1978) found that an impulsive pressure accompanying the bubble col-
lapse was caused by the impact of shock waves, and the jet impingement did not pro-
duce any detectable effects, However, the pressure gauge used in their experiments was
not appropriate to measure the impact of microjet on the boundary, because the
sensing area of the gauge (4 mm in diameter) was much larger than the impinging area
of jet. In §5, the above-mentioned observations will be re-examined using dynamic
photoelasticity. Bubbles highly controlled both in location and time were made in the
water-filled shock tube and photographs were taken of collapsing bubbles near the
surface of a high-modulus photoelastic material. In fact, Ellis (1956) and Naudé &
Ellis (1961) studied spark-induced bubbles using the photoelastic technique. How-
ever, because their photoelastic material was of low-modulus, they could not dis-
tinguish the stress waves due to the shock waves from those due to the jets and the
background noise.

2. Formulation of bubble dynamics
2.1. Statement of the problem and basic equations

There is a spherical bubble of initial radius R, containing both vapour and non-
condensable gas in a viscous compressible liquid. At time zero, the ambient pressure is
increased instantaneously to p,,, and then the bubble begins to collapse accompanied
with phase change and heat conduction through the bubble wall. The problem is to
investigate these physical effects on the bubble collapse and the pressure waves
emanated from the bubble.

Schematic diagrams depicting a model and the temperature profile both inside and
outside the bubble are illustrated in figure 1 (a, b). The temperature discontinuity in the
non-equilibrium region existing at the interface is also shown in figure 1(b).

In writing the basic equations, the following assumptions are made. (1) The bubble is
spherically symmetric. (2) The effect of the interaction between compressibility and
viscosity is negligible. (8) The effects of gravity and diffusion are negligible. (4) The
pressure inside the bubble is uniform throughout. (56) The vapour and non-condensable
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F1Gure 1. Schematic diagrams depicting the model (a) and the temperature profile both inside
and outside the bubble (b).

gas are inviscid and obey the perfect-gas law. (6) The temperatures of the vapour
and non-condensable gas are equal. (7) The thermal boundary layers developing both
inside and outside the bubble are thin enough compared with the bubble radius. (8)
There is a thin but finite non-equilibrium region at the phase interface because of
the continuing process of phase change there. (9) The physical properties of liquid
and gases are constant.

We introduce the assumptions (1)—(3) to facilitate the analysis since we wish to study
mainly the effect of evaporation and condensation of the vapour on the collapse of the
bubble and on the resulting pressure waves. The assumption (1) of spherical symmetry
is, strictly speaking, invalid when a solid wall induces severe distortion in the bubble
shape. However, several investigators (Kuttruff 1962; Fujikawa & Akamatsu 1975;
Efimov et al. 1976) observed the shock wave radiation even from vaporous bubbles
very close to the solid wall. The analysis based on this assumption will be the first
step to elucidate the intensities of shock waves from real cavitation bubbles, in
which heat conduction, non-equilibrium evaporation and condensation occur. The
assumption (4) will remain valid so long as the velocity of the bubble wall is below
the speed of sound in the vapour-gas mixture (Trilling 1952). With the assumption
of a uniform pressure the momentum equation is of no consequence. The assumption
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(5) will of course cease to be valid in the neighbourhood of the critical point. However
it would seem to be difficult to use the Van der Waals equation as the equation of state,
because the analysis becomes formidable. Therefore the molecular interaction is
neglected in this paper as in Plesset & Prosperetti’s (1976) paper. The assumption
(6) will be approximately valid in the case where the molecular weights of the vapour
and non-condensable gas are not extremely different as in the case of water vapour
and air. The assumption (7), for the liquid layer surrounding the bubble wall, where
evaporation and condensation take place, cannot in general be justified merely by the
smallness of the Fourier number. With a view to this, the validity and the limitation
of the thermal boundary-layer approximation are discussed in the appendix. The
exact calculations of Hickling (1963) seem to suggest that it is possible to use the
thin boundary-layer approximation for the gas side as well for the bubble contents
although they were not intended for the total collapse of the bubble.

The assumption (8) of the non-equilibrium region is commonly made when studying
the phase change. We can discuss the absolute rate of evaporation and condensation
under this supposition. Finally, the assumption (9) ceases to be valid at the end of the
collapse phase when the pressure and temperature of the bubble contents increase
rapidly. However, it would seem to be extremely difficult to solve the free boundary-
value problem whilst taking account of the time-dependent physical properties. The
analysis based on the present assumptions will be the first step in an attempt to
understand the behaviour of the collapse of true cavitation bubble in the liquid.

Under the above assumptions, the governing equations for the liquid and gases, and
the boundary conditions at the interface may be expressed as follows.

In the external region occupied by the liquid

Continuity : 33121 31'( ) + 2/)' % _o. (1)
Momentum : —aaﬁt‘+u, 831:’ = -—/l)l 331;‘ (2)
T o(02)
Equation of state: pZ: ;-:_BB (’(l:—:oy1 (4)

In the above ¢ is time, r the radial distance from the centre of the bubble, the suffix /
represents the liquid, p, is the density, p,,, the density at infinity, «, the radial particle
velocity, p, the pressure, p,,, the pressure at infinity, 7; the temperature and D the
thermal diffusivity of the liquid. In equation (4), B is 3010 atm and the index 7 is
7-15 for water. The validity of these values has been discussed elsewhere (Cole 1948).

In the internal region occupied by the mixture of the vapour and non-condensable gas

d

Continuity : 7

fpvdV fmdS for the vapour; (5)

d

7 f p,dV = 0 for the non-condensable gas. (6)
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Here p, and p, are the densities of the vapour and non-condensable gas respectively, V
and 8 the volume and surface area of the bubble. The expression for the rate of evap-
oration and condensation 7 of the vapour has the form (Schrage 1953)

£ 3
Xpy Dy Py

™= EmE ((iﬂuﬁ -I (Tmi)i)’ )

in which «,; is the accommodation coefficient for evaporation or condensation (as-
sumed constant), equal to the ratio of vapour molecules sticking to the phase interface
to those impinging on it, p, the actual vapour pressure, p} the equilibrium vapour
pressure, 7). and 7}, are the temperatures of the vapour and the liquid at the phase
interface respectively, and R, is the gas constant of the vapour. The correction factor
I" is expressed as follows,

F=exp(-Q%)-Q, 7 (1—%fnexp(~x2)dx),

3
in which Q= (R T ) .
P\ 2
] e de _ _Dn ou,,  2u,\ (09 2q
Bmergy: Pm(wumar) *7(;% +T) (Wr (®)

for the thermal boundary layer near the phase interface;

%‘?—H—”’—"ﬂ qudV hf mdS = . 9)
for the global contents within the bubble. The suffix m represents the mixture, p,,
and p,, are the pressure and density of the vapour-gas mixture, u,, is the radial
particle velocity, e the specific internal energy, E the internal energy of the global
contents of the bubble, & the specific enthalpy of the vapour and J the mechanical
equivalent of heat. The heat flux g is expressed as follows,

o7,
qg=— Am—ﬁ’

in which 7], and A, are the temperature and thermal conductivity of the mixture,
respectively. Equation (9) is the first law of thermodynamics for bulk flow through an
open system (Hatsopoulos & Keenan 1965). The global contents of the bubble is taken
here as the open thermodynamic system.

Equation of state:

p, = p, R, T, forthe vapour; (10)
p, = py R, T, for the noncondensable gas; (11
P = P Bpn T, for the vapour-gas mixture. (12)

Here p, is the pressure of the non-condensable gas, R, and R,, are the gas constants of
the non-condensable gas and the mixture respectively.
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At the phase interface

Continusty :

[p,(u, R)]p = —m for the liquid; (13)

[Pm(%py— R)]g = —m  for the vapour-gas mixture. (14)

R is the radius of the bubble, & the bubble wall velocity.

Momentum :

20 o Dyt Dyt [Pty — B) (thpy = )]+ 4"""(3“‘ “’) (15)

pl,R'*"E'—.pu .pg m( 'm m R 3 or r R’

where p, 1, is the pressure in the liquid at the bubble wall, o and g, are the surface ten-
sion and shear viscosity of the liquid respectively (Hsieh 1965).

Energy:
A (aT) _2, (3T) +ml, (16)

or or

where A, is the thermal conductivity of the liquid, and L the latent heat of evaporation
or condensation.

Equilibrium vapour pressure (Clausius—Clapeyron equation):

2 —pceXP(gl_}p (1 %—)) (17)
where p, and T, are the pressure and temperature at the critical state, for water 218-40
atm and 647-31 K, respectively.

Finally, one additional equation is needed, the temperature discontinuity at the
gas-liquid interface (Kennard 1938; Schrage 1953). According to Kogan (1969), this
discontinuity for the flow of gas inside the Knudsen layer in the neighbourhood of the
boundary wall is expressed by the following:

_(2—-0-827ay) K,,,,u,,,,( 2 )i (%)
T 7}1 N 4(Km'— I)aTPpm Rm ﬂi or )’ (18)

where a;, is the thermal accommodation coefficient, P the Prandtl number of the
mixture, p,, the shear viscosity, and «,, is the ratio of specific heats.

2.2. Methods of analysis

2.2.1. The equation of motion of the liguid surrounding a collapsing bubble. We begin
this section with a general discussion of the motion of the compressible liquid during
the bubble collapse. The formulation takes account of the effect of the non-equilibrium
evaporation and condensation. The authors adopt the PLK method to account for
liquid compressibility because this procedure is capable of an indefinitely high degree
of accuracy. Benjamin (1958) first applied this method to solve the problem of the
collapsing bubble and later Jahsman (1968) and Tomita & Shima (1977) further
developed it. As expected, the present solution includes solutions previously obtained
by these investigators as special cases.

Let ®(r,t) be the velocity potential for the liquid. Then the continuity equation (1)
and the momentum equation (2) take the following forms:

4 (224229) 4 (22) (2) -
+’0(3'r2+r 8r)+ 31') ) =0 (19)
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o0 oo dp,
and 5 —_—t= (37-) +f—;l- = const. (20)

From the equation (4) and the boundary conditions of ® = 0, p, = p,,, at r-> o0, the
right-hand side of the equation (20) becomes const. = ¢2 /(n—1). The sound speed
€, In the liquid at infinity is defined as follows:

o= (().) - (52" @)

where p,,, is the liquid density at infinity. Thus, from the equations (4) and (20), we
obtain the sound speed in the liquid:

¢2 = ¢ — (n— 1) [8® /ot + (2D /or)?]. (22)

Therefore, from the equations (19), (20) and (22), we obtain a partial differential
equation concerning the velocity potential @,

PO 200 10 1 26(1)82<I>+2(n 1) 09 00
ot ror L At k| orordt r or ot
R0 oD n+1{00\220 n—1 (0D\3
il 2
to-Dm v (ar) P (ar) ] (23)
The boundary conditions are:
(i) continuity at the phase interface

(0@ /or)g = R—m/py; (24)
(ii) in the liquid at the interface the pressure equation
o0 1 (0P\? c? Dy -+ B\@—Din
— e — —_ ® _ : . 2
737 ] -=l-Gss) ) )
(iii) atinfinity
P=0 as r—>o0; (26)
The initial conditions are:
R=R,
2¢, [(py g+ B\™1l2m at t=0. (27)
oot GsmE) T
Proo + +0

Now, consider the problem along the outgoing characteristic 5(r,¢) = const. such

that
= (u,+¢c)"1dr on 7 = const. (28)

According to the PLK method, we see
1 1 .
O(r,7) = Po(r, 7) T Ga(rim)+ éz“ﬁz(", 7+
r=r, (29)

t= ?7+—t1(m7) +t— tz(" )+ ..

where 7 is the initial time on the outgoing characteristic and satisfies the condition
f=tonr=R.
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(i) First perturbation procedure. The first-order approximation ®,(= @¢+ ¢;/¢s)
determined by

20, 200, 1 PO,

Wi e (30)
with the boundary conditions (24), (25) and (26). The appropriate solution can be
written as follows: o)

®y(r, ) = ~E, (31)
On the other hand, from equation (28), we obtain

r—B(y)

o«

t=1n+ (32)

An unknown function f(7) in equation (31) can be determined from the boundary
condition (24) by using equation (32):

= rr(B-22) - |2k (- o) + BB | 33
f(”) ( ploo) Co R loo) * (R luo) ( )
Therefore, the velocity potential can be written as follows,
o _ _p(p_ ) E 2 —— | +R{R——)}].
(r 77) [R (R ploo) Coo { R (R ploo) * (R le)}] (34)

From equations (24), (25) and (34), we obtain the equation of motion of the bubble
with the first-order correction of the liquid compressibility and the effect of non-
equilibrium evaporation and condensation:

(2o s ) ()

cco plm coo 3ploo cco 3coo plco Cco quo ©
—-—(R+ )+ono Pur_BPur =0, (35)
Preo 2P0 Preo ProCo
20 M (Pi + Pgi — Prc) 4y
where =—— P, + P, vi " Tot TI® (R ——)
Pu.r B PP Proo(Poi + Pgi) F3 Pix

Here p,; and p,; are the densities of the vapour and non-condensable gas at the inter-
face, respectively. The equation (35) is identical with that obtained by Tomita &
Shima, (1977) in case of 72 = p,,; R and p,; = const., and furthermore, with equations by
Herring (1941) and Trilling (1952) in case of 72 = 0. The familiar result of Rayleigh
(1917) is also deduced from the equation (35) for the special case when R/c,,— 0 and
m = 0.

(ii) Second perturbation procedure. Now, the right-hand side of the equation (23) is
obtained from the first-order solution ®,, then the second-order correction ¢, is
determined by 52 ¢2+ 2 o, _ g.f )

ot r or 77’ (
Under the boundary condition ¢, = 0 at r o0, we have

F(p) RY(R—1/pi)’

Po=—"— o7 . (37)
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On the other hand, from equation (28), we obtain
B(y) fopfi_ 1 ] 8
7’+ Co 62 r R(?;) ’ (38)
An unknown function F(y) can be determined from the boundary condition (24) by

using equation (38),

~ IR (R—Eo) _2R2R (R-;’%)g— 2R? (R—b%) (B*+RR)

(o2 fo-2) (-] o

Thus, we can obtain the solution of @ for the second-order approximation as follows:

Dyfr, ) = ——[32 (R-,—,;;)—a;{zR (R‘,’Zo)+R(R_EZo)}

s (-are(R-LY s omn(2-2V vome (8- 1) (e RE)

(19 lowo (&)

+R3(R—Ea—o)(5R—,—);)+R4(R ,%) ME’;’T/”&}]. (40)

Finally, we obtain the equation of motion of the bubble with the second-order correc-
tion of the liquid compressibility and the effect of non-equilibrium evaporation or

condensation:
23 23 4y 3tmRk 1 mz)]
10 10 ps 5 pfo

e e Gl

(R___)[(R+1ﬁ)_332+1(1 o9l _thith 1))

Pio 3P/ Beu C€L\5 30 p 15 ph,  6pi
Ryp
+— [(Z’zao — P, g) — = By, R+ {(2R—‘-) Rpy, g
P Co ao ploo
3mR m2 3 (Pr1o —Pn. 7)
+ (P — RS = +-_1°_LR_]}] =0, (41)
(pl pll, R) [% 2 plao ploo 2 plco

4u 3m m\2 P 1UPro — Pr1, B)
where + ’[___(R_._> _fur TN R/
plz R pll B 2plooR plm plao plzaoR

Disturbances on the bubble wall propagate through the liquid at the sound speed ¢
along the outgoing characteristic (38).

Equation (41) is exactly accurate to second-order terms of the liguid compressi-
bility and is, in case of m = p,; R and p,; = const., identical with that obtained by
Tomita & Shima (1977). Terms with respect to 7 in this equation may be significant
in the final collapsing stage when non-equilibrium evaporation and condensation
become responsible for the behaviour of vaporous bubbles as well as liquid com-
pressibility.

The pressure throughout the liquid can then be found from equations (4), (20) and

o p(rt)=—B [‘“ (pm; B){l' (nc?) [9;1:_2+2(a$ ) ]}n[(n_n]' )
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2.2.2, The temperature of the bubble contents at the interface. We shall now proceed to
obtain an approximate solution of the equation for thermal boundary layer in the
internal gas region bounded by the bubble wall (see figure 1). The simple case without
phase change was fully treated by Flynn (19754, b). We will apply his method to solve
the thermal boundary-layer equation under the boundary conditions with phase
change. We first introduce the modified Lagrangian co-ordinates (z,f) related to the
Eulerian co-ordinates (r,t) by the following relations:

A1) = fo’gzpm@, t)dg/ f f&pm(s,t)dg, (43)

where the z co-ordinate is such that z = 0 at the centre of the bubble (» = 0)and z = 1
at the phase interface (r = R). The denominator in the above equation measures
essentially the mass of the fluid contained within the sphere of radius R, and it is a
time-dependent function when the processes of evaporation, condensation, and
diffusion take place across the gas-liquid interface. The introduction of these modified
Lagrangian co-ordinates (z,¢) as the independent variables offers the obvious advan-
tage of immobilizing the mass of bubble contents. In terms of z and ¢, equation (8)
may be transformed to

oT, 9, @ T, 3p, @
o P ) o 7 ) = O (44)
vm vm

where C,,, is the specific heat at constant volume of the mixture; and ® is the function
defined as follows:

R
0 =3[ puEnd (45)
Here, for convenience, we introduce a function ¢(z, £) such that
o¢
@ _r 1. 46
L T~ T (46)

Then, equation (44) may be written by integration

o O, p,rt % 3 . 7 o OPm ]
Zr o - Lm = 47
H O 0F 3 T O T6 | P n | Tn gy 47| = T, (47)

in which #(t) is an arbitrary function of time. From equation (46),

¢ =fz(Tm_'71lco)dz+Z(t)’ (48)
0

where the function X(¢) may be chosen such that
m(t) =0 and ¢(z,0) =0, (49)

if it is agsumed that the temperature at ¢ = 0is 7}, everywhere. We now approximate
the density p,, by ©/R? and introduce a new time variable y defined by

W@ RE)

X=9] 6,000

£ (50)
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Under the assumption that the pressure inside the bubble is uniform throughout,

equation (47) becomes
¢ P 3p,riu, (1’4 ) 2 (51)

y T C,J0 \R')

where u,, is the velocity, within the bubble, with respect to y. The right-hand side of
the equation (51) may be neglected because the factor (r4/R4— 1) is extremely small

near the interface (r = R) and also 92¢ /922 is small inside the bubble (» < R). We now
introduce the assumption that the velocity within the bubble is a linear function of the

radial (Flynn 19754, 5):
_ Rr_m)l:(R'_l”_)z&, 52
( Pmi) B Pmi (52)

in which R’ and 72’ are the velocity of the bubble wall and the rate of evaporation or
condensation with respect to y respectively, and the suffix ¢ represents the interface.
The right-hand side of the equation (52) was obtained by the approximation that
z ~ (r/R)%. Thus, from the equation (51) we obtain

o ¢  3pm : ) _
oy 822+Cva®(R " P 2=0. (53)

The form of this differential equatlon permits us to define a new dependent variable

W(z: = ¢(Z, + 21/I(X)’ (54)
XPm B2 ( 4 1
where Yix) = J OB (R ——;);—1) dt. (65)
Then, the equation (53) reduces to
ow oW
xR (06)
with the initial and boundary conditions
W(z,0) = 0, (57)
W(0,x) = 0, (568)
ow
(&) = o, (59)
and in which V() = ¥(x)+ Tnilx) - 1. (60)
The appropriate solution of the equation (56) is
x >
Wee ) = = [ [0zl i gt — )€, (61)
where %, is a theta function of the first kind defined by
Hdzlimxl =1 X (—1)"exp[—n%(n—3)2 x+im(n—4})z2]. (62)

n=—c

From the equation (61), we can obtain the gradient of temperature inside the bubble
in the following form:

___--f 9y [3z|ing] Z(I(X g)g dg. (63)
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Here, define an auxiliary function h,(z, x) by

bl X) = sin (3(2k+ D)7l H(x) (k= 0,1,2,3,...), (64)
in which

H.(x)= —Cg"exp [—3(2k+ 1)2n2x]f: exp([}(2k + 1)27x] %dx. (65)

From the equations (50), (55), (60) and (65), we obtain

dH, 9(2k+1)*m?A, R i ( _l"_) C,. 4T,
@t a6 o oa o) 3 @ (66)
Then, the equation (63) may be expressed by the following:
oT, ©
=0 ; (— 1)¥hy(z, 1)
_ (67)

or =2 3 (= 1)H,(¢) sin [3(2k+ 1) 7z].

6

vm k

6
Com k=0
In particular, the temperature gradient of the bubble contents at the phase interface
(z = 1) becomes

aT
From the equations (18) and (68), we obtain the temperature of the bubble contents
at the interface as follows:

92—0-827a,)k,
Tmi = Tli—' ( T) mfm

2m
2(Km— 1)‘11' CmPpm (R q’;{) k§=: Hk(t) (69)

2.2.3. The temperature at the centre and the pressure of the bubble contents. For sim-
plicity, we assume the temperature distribution within the bubble to be

T,=T, when 0<r<R-§
} (70)

and T,=T..— (3T) .(r—R) when R-4<r<R,

where T, is the temperature at the bubble centre; and ¢ is the thermal boundary-
layer thickness defined by
_ (Tm_ Tmi)
§= oT,/or)g’ (11)

As the bubble collapse proceeds, the temperature of the bubble contents tends to
become spatially uniform (Hickling 1963); the interfacial temperature approaches
that at the centre and the thermal boundary-layer thickness § becomes small in com-
parison with the bubble radius.

Substituting equation (70) into equations (5) and (6), and arranging them by using
the equations of state, (10) and (11), we obtain

dp, T,
dt 6017—61’ (72)
and By _g Tne_g (13)

T nVdr
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where

e,,1=[( P9 {(R“”2+ 1 i)[I+8{2a8+2R—8+2(a8+R)aln(%;:-Z):]:

T T\ T T.-T,
e AR A
<o 2ot (2 ] /[ )| &

_ -5 (R—8)? I é
0”2“[ ”a{ﬂ(T m>[ Tt @) (e =)

7. 1
x {2a8+ 2R~8+2(aé+R)aln (—7—,’;)}] + T =T

x [(aa;mg 7 ! T T 3,,”)2 {a+ 2(8 4 B)In @)”}%

mi me

= o |9+ o+ B (%w)]}“ﬁﬁ%f)
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Replacing p, and 72 by p, and zero respectively, we can obtain 6, from the equation
(74) and 6,, from equation (75).

Thus, the equation concerning the temperature at the bubble centre may be
obtained from the equations (9), (70), (72) and (73) in the following form:

Ty 30,0y — 1)+ Pylke= DB _[Oualicy=1) + Bpality— 1]
2t B, D) 3O kDR [Byg(Ky = 1)+ Oyl ~ D]

3J(k,~ 1) (k,— 1) D s 18X
[%(xg—1>+001<'3<,,—1)]R'[7R o R CP”T'"””] (78)

in which &, and &, are the ratios of specific heats of the vapour and non-condensable
gas respectively; C,,, is the specific heat at constant pressure of the vapour.
Initial conditions of the equations (72), (73) and (76) are:

pv = p:r pg = pgos Tmc = Tm»t' (77), (78)! (79)
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2.2.4. The temperature in the liquid at the interface. In addition to the equation (16)
we have the following initial and boundary conditions:

ﬂ(’l‘, O) = q}uo) (80)
Tr,t)=T, as r->oco, (81)

in which 7], is the liquid temperature at infinity. An approximate solution to the
problem posed by the equations (3), (16), (80), and (81) was obtained by Plesset &
Zwick (1952) under the assumption that appreciable temperature gradients are
established only in a thin layer surrounding the bubble wall. The zeroth-order solution
and the first-order correction for the bubble surface temperature 7T}, may be summar-
ized as follows:

n-n- () oS5 e (=] e

\

in which &(t) = f(:R“(E) dg,

mlL 187, =

O RE RO
__(D\}[*R(Q)dL
o0 =-(3) [, ooon

3. Numerical results and discussions

All physical quantities involving length, time, velocity and so on, may now be made
dimensionless through the following normalization, primes indicating the dimension-
less quantities:

r ’ 'R ’ t plw)* ’ (P w)* 5 “P R
r=—, R==, t=={(=), R=R|E=), R =R
R, R, By \p Dieo Do
’ P ’ T ’ P .7 m ’ .o 0
=, T = m s =-——, m y M =m—,
P Pio q}co p P (pluoplco)& DPio
] M ’ a ! plw * ’ Pio 11100
= 57— = 0w = Co{ T » R =R ’
~ By(preo P1o)¥’ 7 Eypro’ ° ° ( zw) Do
C C L D (p\t A
Op==2 Cp==2 L ==—, D'=—(-ﬂ) , V=
? Oh: ? Olv Ch: lo Ro Dieo Clv Rﬂ(plco plw)&
Jr = Jplw Olv q}w.
plco

All the equations are rewritten in dimensionless form, but retain virtually the same
forms as those without the primes.

Differential equations (41), (66), (72), (73), and (76) were numerically integrated
by the Runge-Kutta~Gill method on the digital computer FACOM M-190 in the
Computing Center, Kyoto University. For comparison with our experimental
data obtained by the water shock tube, the following initial conditions were
chosen: R, = 1-0mm, 7}, = 293-15K, p;,, = 0-7025 atm, p,y = 0 and 0-01p;, atm,
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Density (water) P 998-2 kg m—3

Shear viscosity (water) ) 1:022 x 10— kg s m—2

Shear viscosity (air) o 1-86 x 10— kg sm—2

Shear viscosity (water vapour) Py 1-28 x 10-¢ kg s m~2 (100 °C)

Surface tension (water-saturated vapour) o 7-20 x 10-3 kg m!

Gas constant (air) R, 29-27 kg m kg1 K—!

Gas constant (water vapour) R, 47-06 kg m kgt K!

Thermal conductivity (water) A, 1.43 x 104 keal m—1 g1 °C—1

Thermal conductivity (air) A, 6-11 x 10~ kcal m—1 g-1 °C-1

Thermal conductivity (water vapour) A, 578 x 10-® keal m-1 g1 °C~1 (100 °C)

Thermal diffusivity (water) D, 1.43 x 10" m? g-1

Specific heat (water) Cro 0-998 kecal kg1 °C—1

Specific heat at constant pressure (air) Cyy 0-240 keal kg1 °C-1

Specific heat at constant pressure Cpo 0-444 keal kg1 °C—?
(water vapour)

Specific heat at constant volume (air) Cuy 0-171 keal kg1 °C-1

Specific heat at constant volume Cyo 0-334 keal kg* °C-1
(water vapour)

Ratio of specific heats (air) K,y 1-40

Ratio of specific heats (water vapour) Ky 1-33

Latent heat L 585-47 kecal kg™

Prandtl number (air) P, 0-71

Prandtl number (water vapour) » 1-12 (100 °C)

Sound speed (water) Coo 1483 m 81

Mechanical equivalent of heat J 426-8 kg m kecal™?

TasLE 1. Physical properties (at 1 atm, 20 °C)

Pyo = 0-02305 atm, oy, = 0, 0-01, 0-04, 0-1 and 1-0. The water molecule is polar
and, of course, rather asymmetrical, so that the accommodation coefficient for
condensation «,, could very well be a small number (Knacke & Stranski 1956).
Alty & Mackay (1935), Hill (1966) and Mori et al. (1973) made experiments for the
water vapour and concluded that oy, =~ 0-04. Therefore the numerical results are
shown mainly for the value a;;, = 0-04. As to the thermal accommodation coefficient,
the value obtained by Alty (1936) and Hill (1966), o, = 1-0, was adopted in
this study. The physical properties of water, water vapour, and air are shown in
table 1.

Figures 2-8 are concerned with the behaviour of a bubble for p,, = 0-01p,,, and
oy = 0-04. The results are compared with the behaviour of the bubble containing air
undergoing an adiabatic process and the saturated vapour, which is indicated by
chained lines with one dot.

Figure 2 shows the time history of the bubble radius. In the case in which the
evaporation and condensation of water vapour and the heat conduction take
place at the bubble wall, the bubble contracts slowly in the final stages of the collapse in
comparison with the adiabatic case. The damped ratio of the maximum radius
Pmax of the rebounding bubble, (|Ry— RBmax|/Ry x 100), is 19-4 9, for thebubble with
evaporation or condensation and heat conduction, and is 17-29, for the adiabatic
bubble. The damping of the bubble oscillation is caused by the effects of liquid
compressibility, evaporation or condensation and heat conduction.

Figure 3 shows the time histories of the bubble wall velocity V(= R) and the
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Fiaure 2. The time history of the bubble radius.
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Ficure 3. The time histories of the bubble-wall velocity and characteristic velocity of
evaporation or condensation.

characteristic velocity of evaporation and condensation V,. The latter V, is defined by

the following: BT 0500 (T

Vf"‘M( or ) | o\,

where p¥ is the equilibrium vapour density at the phase interface. The actual vapour
pressure within the bubble mainly depends on the relations between V and V,. That is,
if V > V,, the vapour pressure will increase because of high rates of compression. If
V < V,,the vapour pressure will be kept in an equilibrium state. In the case of figure 3,
| V| is always greater than |V,|, and the difference between |V| and |V,| tends to
increase as the bubble collapses. The wall velocity of the bubble collapsing with
condensation and heat conduction is slightly low in comparison with the case of
adiabatic collapse. The vapour still continues to condense during 4-3 s immediately
after the first rebound owing to the non-equilibrium effect of condensation.

i
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Ficure 4. The time histories of the temperatures of the bubble contents (a) and liquid ().

Figure 4 shows the time histories of the temperature of the bubble contents (a) and
the liquid (b). In this case, the maximum temperatures at the centre and at the inter-
face of bubble are 6700 K and 3413 K respectively. These temperatures are much
lower than those in the adiabatic collapse (8786 K). The temperature throughout the
bubble contents is not uniform because of heat conduction at the interface. The inter-
facial temperature of the bubble falls to 292-4 K at a time 2 us after the first rebound,
because the bubble rapidly expands. The temperature at the bubble centre, on the
other hand, decreases adiabatically during 11-4 us after the rebound, and then it is
maintained at about 870 K. The maximum interfacial temperature of the liquid is
474 K. The temperature discontinuity at the interface increases as the bubble collapse

proceeds.
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FicUure 5. The time history of the vapour pressure within the bubble.

Figure 5 shows the time history of the vapour pressure within the bubble. In this
case, the maximum vapour pressure p,max is 144 atm, while the maximum equili-
brium vapour pressure p¥ . = 15-6 atm. The actual vapour pressure deviates from
the equilibrium pressure in the final stages of collapse.

Figure 6 shows the time history of the gas (air) pressure within the bubble. The gas
pressure almost adiabatically varies, and attains to 848 atm when the bubble
contracts to its minimum radius. Meanwhile, in the case of adiabatic collapse, the
maximum gas pressure is 1033 atm.

Figures 7 (a) and (b) show the pressure distributions in the liquid before and after the
collapse of the bubble containing gas and water vapour. The comparison of the result
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Fiaure 6. The time history of the gas pressure within the bubble.

of the present calculation with the adiabatic collapse (Tomita & Shima 1977) is made
for nearly the same bubble radii. In these figures, dotted lines indicate the pressure
at the bubble wall, and dashed lines represent the locus of the instantaneous peak
pressure. The time is defined in dimensionless form as follows:
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where ¢ is the time elapsed from the start of the collapse. In the early stages of the
collapse the pressure in liquid is slightly lower than that in the adiabatic case, but in
the final stages becomes higher than it. The attained maximum impulsive pressures
are 991 atm for the present calculation and 1033 atm for the adiabatic collapse.
The pressure in liquid attenuates by the effect of liquid compressibility and, at the
instant when the bubble attains its minimum radius, the pressure, at the position
r/Ry = 1,is 13 atm (the same value as in the adiabatic case). Figure 7(b) shows that
the pressure wave forms and travels outwards into the liquid after the rebound. The
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Fi1cure 7. The pressure distributions in liquid (a) before and (b) after the collapse of a vapour—
gas bubble with initial radius By = 1-0 mm: , present work; —-—, adiabatic collapse

pressure front gradually steepens, but the wave attenuates approximately in pro-
portion to 1/r through the liquid. The peak pressure is lower than that in the adiabatic
collapse and, at the position /R, = 1, 58 atm (in the adiabatic case 63 atm). As a
whole, present calculations support the earlier work (Hickling & Plesset 1964; Tomita
& Shima 1977) both in the order of magnitude of the peak pressures and the pressure
wave attenuation in inverse proportion to distance.

Figures 8(a) and (b) show the pressure distributions in liquid before and after the
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collapse of a bubble with initial radius By = 0-1 mm; initial conditions are the same as
those in figures 2-7. The present bubble collapses to a much smaller radius in compari-
son with the adiabatic collapse, because the smaller bubbles show increased effects of
heat conduction; the thermal diffusion length { within the bubbles will be proportional
to R}, and the ratio ! /R, will vary as Ryt (Hickling 1963). This results in a high collapse
speed and a more violent collapse. The attained maximum impulsive pressure and gas
temperature at the bubble centre are 2265 atm and 4151 K, respectively. The pres-
sure is about twice that in the adiabatic collapse, whilst the temperature is about one-
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F1cure 8. The pressure distributions in liquid (a) before and (b) after the collapse of a vapour—
gas bubble with initial radius Ry = 0-1 mm: , present work; —-—, adiabatic collapse.

half of the temperature in that case. During rebound, a stronger pressure wave
emanates into the liquid and its front steepens when compared with the adiabatic
case. In fact, Efimov et al. (1976) experimentally demonstrated that bubbles smaller
than 0-1 mm in diameter collapse in spherical form close to a solid boundary, and that
the damage by these bubblesis caused by shock waves and accompanied with chemical
corrosion.

Figures 9(a) and (b) similarly show the pressure distributions before and after the
collapse of a bubble with initial radius B, = 1-0 mm containing only the water vapour.
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102

The calculations are performed for the value e, = 0-01. In this case, the maximum
impulsive pressure pj;max is 1291 atm. The pressure at the instant when the bubble
reaches its minimum radius is 12 atm at the positionr/R,= 1. Meanwhile, the greatest
pressure at the same position after the collapse is 67 atm. In case of the bubble
collapsing near the solid boundary, the centre of the bubble approaches the boundary.
So that the much stronger pressure wave is to be observed at the position of the bound-
ary (Kling & Hammitt 1972; Lauterborn & Bolle 1975; Fujikawa & Akamatsu 1975,
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Ficure 9. The pressure distributions in liquid (a) before and (b) after the collapse of a vapour
bubble with initial radius B, = 1-0 mm.

1978). Here, even a purely vaporous bubble proves to produce a pressure wave at the
instant of the rebound. The mechanism can be explained as follows; at the initial
stages of the collapse the vapour condenses back into the liquid, so that the vapour
pressure in the bubble remains equal to a saturated vapour pressure. However, at the
final stages the collapse takes place so rapidly that most of the vapour does not have
enough time to condense. This remnant of vapour may then be compressed to a high
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pressure, which will eventually become large enough to halt the inrushing liquid. Then
the bubble rebounds and the pressure wave radiates into the liquid.

Table 2 shows the effects of the accommodation coefficient for evaporation and
condensation on the attained minimum bubble-radius, the maximum pressures and
temperatures within the bubble and at the interface, and the maximum rate of conden-
sation through the interface. The suffixes min and max represent the minimum and
maximum values respectively.

Table 2(a) is concerned with a purely vaporous bubble. The values for o, = 0-04
are shown in parentheses, because the assumption of thin thermal boundary layer
may break down. The larger the value of a;, (i.e. the more rapidly the water vapour
condenses), the smaller the radius to which the bubble collapses. As a whole, the
attained minimum radius is small compared with the bubble containing the gas—
vapour mixture. The smaller the radius to which the bubble collapses before the
rebound, the greater the build-up of inertia in the liquid, and consequently the higher
the inertial energy stored in the bubble as potential energy and then released to
produce the stronger pressure wave into the liquid at the instant of rebound.

Table 2 (b) is concerned with a bubble containing both the water vapour and non-
condensable gas. For o, = 0-1 the bubble contracts to a much smaller radius com-
pared with other values of a,,, while the interfacial temperature of the bubble con-
tents 7,,;max and the impulsive pressure p,;max reach the higher values. For oy, = 0:04
the liquid temperature 7};,,.x and the rate of condensation 7imax at the interface are
maxima respectively. According to the equation (7), in the case of p, > p¥ (i.e. in the
final collapse stages), the rate of condensation 7 is approximately proportional to the
product of the coefficient o, and the actual vapour pressure p,. As shown in the table,
this value is the largest for a;, = 0-04. The variation in liquid temperature is mainly
produced by release of the latent condensation heat. The temperature of the bubble
contents at the centre becomes higher as the coefficient a,, increases. A bubble con-
taining the water vapour and gas seems to collapse not so straightforward as a bubble
containing only the water vapour.

4. Experiments

Extensive experiments on collapsing behaviour of single, twin and triadic bubbles
near the solid boundary were previously performed in a water shock tube (Fujikawa
& Akamatsu 1975, 1978). Principal results observed by pressure gauges and high-
speed photographs can be summarized asfollows: (1) the water jet does not produce any
detectable effects; (2) the impulsive pressure is brought about by the shock wave; (3)
the shock intensity is of the order of 104 atm, and its duration 2 ~ 3 us. Here, the
authors will further offer supplemental evidences for these conclusions by means of
dynamic photoelasticity.

4.1. Apparatus
The authors have already given a detailed description of their water shock tube
(Fujikawa & Akamatsu 1975, 1978). So they will explain only the present experimental
method. In the water-filled shock tube, bubbles expand to maximum radii under the
action of expansion waves, and then collapse under successive compression waves. The
collapse and rebound of bubbles situated at various distances from the solid boundary
of a photoelastic material are observed by means of photoelastic technique.
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Ficure 10. The configuration of the photoelastic specimen relative to the
bubble and the pressure gauge.

Figure 10 shows the configuration of a photoelastic specimen relative to a bubble
and a pressure gauge. The specimen is fabricated with 12 x 8 mm, 6 mm-thick epoxy
resin (photoelastic sensitivity: 1-00 mm kg—1) of stress wave velocity 2600 m s—1. The
pressure gauge with high response is flush mounted with the tube wall opposite to the
photoelastic specimen and is used to detect the instant of arrival of the shock wave
radiated from the bubble. The distance from the surface of specimen to the pressure
gauge is just 15-6 mm. Given the speed of sound in water as 1483 m s~ (at 20 °C), it
takes 10-57 us for the shock wave emanating from the bubble to reach the pressure
gauge; that is, the shock wave is to have been radiated from the bubble, 10-57 us before
theimpulsive pressure is detected by the present pressure gauge. The pulsed organic dye
laser is employed as a light source with the pulse width of 0-3 us. The pressure history
in the test section and the instant of laser emission are recorded on the same time
base of the synchronoscope.

4.2. Experimental results and discussions

4.2.1. Microjet formation and shock wave radiation. Figure 11 (plate 1) shows typical
high-speed photographs of a spherical bubble collapsing close to a solid boundary. The
bubble is produced at a distance L = 1-80 mm from the boundary and reaches a
maximum radius B, = 0-95 mm; the ratio L/ R, = 1-89. Frames are consecutive, and
follow one another from left to right. The time elapsed from the start of collapse is
marked under each of the frames. During collapse, the bubble loses spherical symmetry
by flattening on the bubble wall opposite to the solid boundary. As a result of a higher
collapse speed of the upper bubble wall, a microjet can be expected to be produced,
penetrating the bubble towards the boundary; the jet, inside the bubble, is invisible
because these frames are shadow pictures taken by a Cranz—Shardin camera. The
funnel-shaped protrusion, visible as a fine dark line, is a secondary effect produced by
the jet impingement on the lower bubble wall. This is called ‘tip’ and distinguished
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from ‘true jet’ (Lauterborn & Bolle 1975). Whether the true jet and the tip can pro-
duce impulsive pressures will be clarified in §4.2.2.

Figures 12 (a) and (b) (plate 1) show representative pictures of shock waves radiated
from bubbles (@) close to, or (b) in contact with, the solid boundary. These results
clearly demonstrate that the presence of a solid boundary does not inhibit the rebound
of a vaporous bubble and the resulting shock wave radiation.

4.2.2. Stress fringes, in the photoelastic material, caused by the bubble collapse. Figures
13 (@) and (b) (plate 2) show typical high-speed photographs of bubbles in contact with,
or close to, the solid boundary. The impulsive pressure due to the bubble collapse and
the signal of laser emission are recorded on each oscillogram. The picture marked with
the underlined time index was taken by just the timed laser-emission.

The isochromatic fringe patterns in the specimen due to the stress wave, as shown in
figure 13 (a), are originated by the second rebound of the bubble initially in contact
with the solid boundary. The signal of the impulsive pressure due to the first rebound
of the bubble triggers, through a variable delay unit, a laser flash lamp so that the
stress waves due to the second rebound of the bubble are photographed at any stage
of their propagation. In particular, the fifth frame shows that the stress-wave propa-
gates 3-5 mm after its appearance on the specimen. The wave velocity being 2600 m s—!
in epoxy resin, the present stress wave had been generated on the surface of the photo-
elastic specimen, 1-34 us before this photograph was taken. On the contrary, the
corresponding oscillogram shows that the laser light was emitted at the instant that
1-31 us elapsed after the shock wave (second impulsive pressure) radiated from the
bubble; the time difference between the laser signal and the second impulsive pres-
sure is 9-26 us and it takes 10-57 us for the shock wave to reach the pressure gauge
(figure 10) situated on the opposite wall. The difference in time 0-03 us is within the
limit of experimental error. Therefore, the present stress wave in the specimen proves
to be caused by the shock wave emanated at the instant of the bubble rebound. It must
be noted here that no isochromatic fringe patterns are recognized in the specimen
before the bubble rebounds (second and third frames) although the bubble collapses
in such a situation that the jet is expected to directly impinge on the bouadary.
Therefore, the strength of the jet may be inferred to be much less than the shock inten-
sity. The sensitivity, with respect to the spatial extension, of the specimen may be
sufficient to detect the impact of the jet, judging from the fact that the stress wave
caused by a shock wave emanated at the minute bubble size (< 0-1 mm in radius
(Fujikawa & Akamatsu (1978)) can be clearly observed.

The behaviour of a bubble in the vicinity of the boundary is shown in the figure
13(b). The bubble is produced at a distance L = 3:20 mm from the boundary and
reaches a maximum radius B, = 2-76 mm; the ratio L/R, = 1-16. Even in the present
situation, very close to the solid boundary the jet, on the upper bubble wall, does not
directly strike the boundary. During rebound, the bubble approaches the boundary
forming the tip and finally attaches to the solid surface. The second frame clearly
indicates that the stress fringes are caused in the photoelastic specimen before the tip
reaches the surface. These fringes originate from the impact of shock wave radiated
at the instant of bubble rebound, as the authors pointed out in their previous papers
(Fujikawa & Akamatsu 1975, 1978). The shock intensity on the boundary is of the
order of 102 atm, from the results in the preceding chapter, provided that the bubble
collapses in spherical form.
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From the above observations, we conclude that the impulsive pressure is caused by
the shock wave radiated into the liquid at the instant of the rebound of the collapsing
bubble, and that the jet impingement does not produce any perceivable effects.

5. Conclusions

First, a set of equations has been obtained to predict the dynamical behaviour of a
cavitation bubble in a liquid. The present formulation takes into account the effects of
compressibility of the liquid, nonequilibrium condensation of the vapour, heat con-
duction and temperature discontinuity at the phase interface.

Secondly, numerical analyses have been made of the effect of non-equilibrium con-
densation of water vapour in a vapour—gas bubble collapsing in water. It has been
found that the temperature gradient develops inside the bubble owing to heat con-
duction through the interface, and that the combinations of the condensing water
vapour and non-condensable gas have a very strong influence on the behaviour of
collapsing bubble and the radiated pressure wave. The calculations indicate further
that a purely vaporous bubble may produce a strong pressure wave in the liquid at the
instant of the rebound.

Thirdly, the stress wave, both in a solid and a liquid, due to the collapse of a single
bubble has been observed in detail by means of the dynamic photoelastic technique.
The present experimental evidences also support our previous observations that the
impulsive pressure accompanying the bubble collapse is caused by the shock wave
radiated into the liquid from the bubble, and that the jet impingement does not pro-
duce any detectable effects.

Continuation of the present numerical calculations will reveal the effects of the
initial bubble radius, liquid temperature, and applied ambient pressure in the liquid
on the collapse of the cavitation bubble.

This research was carried out partly with the Grants in Aid for Scientific Research
of the Ministry of Education in Japan both in 1976 and 1978. The authors wish to
express their gratitude for these grants.

Appendix. The thickness of the thermal boundary layer outside
the bubble wall

The principal difficulty in the analysis of heavy bubble collapse is that, unlike the
case of growth, the thickness of the liquid layer cannot in general be taken to be small
compared with the bubble radius for all times (Plesset & Prosperetti 1977).

Let us here estimate approximately the thickness of the liquid layer surrounding the
bubble wall and also consider an applicable limitation of thermal boundary-layer
approximation adopted in the present paper. For analytical simplicity, assuming that
the temperature profile in the liquid layer is a parabolic curve and that the heat con-
duction inside the bubble is negligible, then the thickness of the liquid layer J; can be
expressed as follows (Mitchell 1970; Mitchell & Hammitt 1974):

8 DiL(p,(R) R*—p,(B,) BY)

R T AT E @n
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where the notation is the same as used in the body of this paper. Estimating the equa-
tion (A 1) for a purely vaporous bubble in the final stage of collapse, for example
with By = 1mm, B = 0-05 mm, p,(R,) & 1'7x 10"°gem™3, p, (&) = 91 x 10~2gcm—3,
1. =293 K, and 7}, = 575 K (for o;; = 0-01 in table 2(a)), we obtain

0/R=~90x1072 <1,

However, for larger values of a,,, this inequality (that is, the assumption (7)) may
break down because bubbles contract to smaller radii. For oy, = 0-04 in table 2 (a), the
numerical results (in parentheses) are listed for comparison with those for other values
of a;;. Concerning vapour and gas bubbles as shown in table 2(b), the liquid layer
thickness is of the order of a few-tenths of the minimum bubble radius. The zero-order
solution of Plesset & Zwick (1952) may be inadequate to obtain the bubble surface
temperature. In the present analysis, a first-order correction is made for the zero-order
solution. Neverthless, in the final stage of the collapse, the bubble wall temperature
may be estimated larger by a few per cent than an exact solution because the latent
heat of condensation, in the thermal boundary-layer approximation, is taken to be
stored only in the thin liquid layer.
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Ficure 11. Mierojet formation from the bubble in the neighbourhood of the solid boundary.
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Fi1gure 12. The photographs of the shock waves emanating from the bubbles (@) close to, or (b) in
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