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Effects of the non-equilibrium 
condensation of vapour on the pressure wave produced 

by the collapse of a bubble in a liquid 

By SHIGEO FUJIKAWA AND TERUAKI AKAMATSU 
Department of Mechanical Engineering, Kyoto University, Kyoto 

(Received 22 December 1978 and in revised form 2 July 1979) 

Analytical and numerical analyses have been made of the physical behaviour of a 
collapsing bubble in a liquid. The mathematical formulation takes into account the 
effects of compressibility of the liquid, non-equilibrium condensation of the rapour, 
heat conduction and the temperature discontinuity a t  the phase interface. Numerical 
solutions for the collapse of the bubble are obtained beyond the time when the bubble 
reaches its minimum radius up to the stage when a pressure wave forms and propagates 
outward into the liquid. The numerical results indicate that evaporation and conden- 
sation strongly influence the dynamical behaviour of the bubble. 

In addition, the propagation of the stress wave, both in a solid and a liquid, due to 
the collapse of the bubble has been observed by means of the dynamic photoelasticity. 
It is clearly demonstrated that the stress wave in a photoelastic specimen is caused by 
impact of the pressure wave radiated from the bubble. 

1. Introduction 
The main interest in cavitation bubble dynamics arises from the destructive action 

due to the collapse of bubbles in liquids near solid boundaries. Most of the theoretical 
and experimental efforts have been attempted in order to understand the mechanism 
by which the violent action of collapsing bubbles is brought to bear on the boundary. 

Until now two different mechanisms have been theorized as the source of cavitation 
damage. One is that shock waves are radiated into the liquid when the collapsing 
motion of spherical bubbles is arrested (Hickling & Plesset 1964; Tomita & Shima 
1977); in this case, the bubbles are supposed to contain only a small amount ofnon- 
condensable gas. The other mechanism is the impingement of liquid jets formed on 
bubbles in the neighbourhood of solid surfaces. This idea was first put forward by 
Kornfeld & Suvorov (1944). Then Naudt5 & Ellis (1961) and Plesset & Chapman 
(1971) showed that liquid jets may form on empty bubbles collapsing in the neighbour- 
hood of solid boundaries. Recently Shima & Nakajima (1977) studied the problem of 
the collapse of a gaseous bubble attached to the solid boundary. They concluded that 
the cushioning effect of the internal gas weakened the jet or caused the bubble to 
rebound without the liquid jet. 

The cushioning effect may be expected even for a purely vaporous bubble. Evapora- 
tion and condensation take place a t  a finite rate. If this rate is not high enough to keep 
up with the reducing rate of volume of the cavity, the vapour in the cavity will behave 
like a non-condensable gas. This so-called non-equilibrium effect on condensation will 
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play an important role in the final collapsing stages when the inward radial velocity of 
the bubble wall increases rapidly (Plesset 1949; Zwick & Plesset 1955; Theofanus et 
al. 1969; Mitchell & Hammitt 1974). One of the objects of the present study is to eluci- 
date the behaviours of the bubble collapse and the resulting pressure waves. In  $3 2, 
3 and 4, the theoretical and numerical analyses will be made taking account of the 
effects of evaporation and condensation and temperature discontinuity at  the inter- 
face, heat conduction inside the bubble and in the surrounding liquid, and compres- 
sibility of the liquid. 

On the other hand, experiments on the collapse of bubbles have been performed by 
numerous investigators (Jones & Edwards 1960; Naud6 & Ellis 1961; Kuttruff 1962; 
Benjamin & Ellis 1966; Kling & Hammitt 1972; Lauterborn & Bolle 1975). Jones & 
Edwards observed shock waves radiated into the liquid at  the instant of the collapse 
of spark-induced bubbles. Kuttruff observed not only shock waves, but also flashes of 
sonoluminescent light from the ultrasonic cavitation. The others showed that the 
jets formed on bubbles collapsing near solid boundaries. Ebeling & Lauterborn (1977) 
observed, by cinematic holography, shock waves emanating from collapsing bubbles 
generated by laser pulses. Recently, by using a water shock tube, Fujikawa & Aka- 
matsu (1975, 1978) found that an impulsive pressure accompanying the bubble col- 
lapse was caused by the impact of shock waves, and the jet impingement did not pro- 
duce any detectable effects. However, the pressure gauge used in their experiments was 
not appropriate to measure the impact of microjet on the boundary, because the 
sensing area of the gauge (4 mm in diameter) was much larger than the impinging area 
of jet. In  $5, the above-mentioned observations will be re-examined using dynamic 
photoelasticity. Bubbles highly controlled both in location and time were made in the 
water-filled shock tube and photographs were taken of collapsing bubbles near the 
surface of a high-modulus photoelastic material. In  fact, Ellis (1956) and Naud6 & 
Ellis (1961) studied spark-induced bubbles using the photoelastic technique. How- 
ever, because their photoelastic material was of low-modulus, they could not dis- 
tinguish the stress waves due to the shock waves from those due to the jets and the 
background noise. 

2. Formulation of bubble dynamics 
2.1. Statement of the problem and basic equations 

There is a spherical bubble of initial radius R, containing both vapour and non- 
condensable gas in a viscous compressible liquid. At time zero, the ambient pressure is 
increased instantaneously to plm, and then the bubble begins to collapse accompanied 
with phase change and heat conduction through the bubble wall. The problem is to 
investigate these physical effects on the bubble collapse and the pressure waves 
emanated from the bubble. 

Schematic diagrams depicting a model and the temperature profile both inside and 
outside the bubble are illustrated in figure 1 (a,  b) .  The temperature discontinuity in the 
non-equilibrium region existing at  the interface is also shown in figure I ( b ) .  

In  writing the basic equations, the following assumptions are made. (1)  The bubble is 
spherically symmetric. (2) The effect of the interaction between compressibility and 
viscosity is negligible. (3) The effects of gravity and diffusion are negligible. (4) The 
pressure inside the bubble is uniform throughout. (5 )  The vapour and non-condensable 
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FIGURE 1. Schematic diagrams depicting the model (a) and the temperature profile both inside 
and outside the bubble (b). 

gas are inviscid and obey the perfect-gas law. (6) The temperatures of the vapour 
and non-condensable gas are equal. (7) The thermal boundary layers developing both 
inside and outside the bubble are thin enough compared with the bubble radius. (8) 
There is a thin but finite non-equilibrium region a t  the phase interface because of 
the continuing process of phase change there. (9) The physical properties of liquid 
and gases are constant. 

We introduce the assumptions (1)-(3) to facilitate the analysis since we wish to study 
mainly the effect of evaporation and condensation of the vapour on the collapse of the 
bubble and on the resulting pressure waves. The assumption (1)  of spherical symmetry 
is, strictly speaking, invalid when a solid wall induces severe distortion in the bubble 
shape. However, several investigators (Kuttruff 1962; Fujikawa & Akamatsu 1975; 
Efimov et al. 1976) observed the shock wave radiation even from vaporous bubbles 
very close to the solid wall. The analysis based on this assumption will be the first 
step to elucidate the intensities of shock waves from real cavitation bubbles, in 
which heat conduction, non-equilibrium evaporation and condensation occur. The 
assumption (4) will remain valid so long as the velocity of the bubble wall is below 
the speed of sound in the vapour-gas mixture (Trilling 1952). With the assumption 
of a uniform pressure the momentum equation is of no consequence. The assumption 
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(5) will of course cease to be valid in the neighbourhood of the critical point. However 
it would seem to be difficult to use the Van der Waals equation as the equation of state, 
because the analysis becomes formidable. Therefore the molecular interaction is 
neglected in this paper as in Plesset & Prosperetti's (1976) paper. The assumption 
(6) will be approximately valid in the case where the molecular weights of the vapour 
and non-condensable gas are not extremely different as in the case of water vapour 
and air. The assumption (7),  for the liquid layer surrounding the bubble wall, where 
evaporation and condensation take place, cannot in general be justified merely by the 
smallness of the Fourier number. With a view to this, the validity and the limitation 
of the thermal boundary-layer approximation are discussed in the appendix. The 
exact, calculations of Hickling (1963) seem to suggest that it is possible to use the 
thin boundary-layer approximation for the gas side as well for the bubble contents 
although they were not intended for the total collapse of the bubble. 

The assumption (8) of the non-equilibrium region is commonly made when studying 
the phase change. We can discuss the absolute rate of evaporation and condensation 
under this supposition. Finally, the assumption (9) ceases to be valid a t  the end of the 
collapse phase when the pressure and temperature of the bubble contents increase 
rapidly. However, it would seem to be extremely difficult to solve the free boundary- 
value problem whilst taking account of the time-dependent physical properties. The 
analysis based on the present assumptions will be the first step in an attempt to 
understand the behaviour of the collapse of true cavitation bubble in the liquid. 

Under the above assumptions, the governing equations for the liquid and gases, and 
the boundary conditions a t  the interface may be expressed as follows. 

In the external region occupied by the liquid 

Continuity : 

Momentum : 

Energy: 

Equation of state: 

(3) 

(4) 

In  the above t is time, r the radial distance from the centre of the bubble, the suffix 1 
represents the liquid, p, is the density, plm the density at  infinity, u1 the radial particle 
velocity, p1 the pressure, p, ,  the pressure at  infinity, % the temperature and D the 
thermal diffusivity of the liquid. In equation (4), B is 3010 atm and the index n is 
7.15 for water. The validity of these values has been discussed elsewhere (Cole 1948). 

In the internal region occupied by the mixture of the vapour and non-condensable gas 

Continuity : $ Iv pv d V = lS riz dX for the vapour ; 

pg d V = 0 for the non-condensable gas. (6) 
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Here p, and p, are the densities of the vapour and non-condensable gas respectively, V 
and S the volume and surface area of the bubble. The expression for the rate of evap- 
oration and condensation m of the vapour has the form (Schrage 1953) 

in which anr is the accommodation coefficient for evaporation or condensation (as- 
sumed constant), equal to the ratio of vapour molecules sticking to the phase interface 
to those impinging on it, p ,  the actual vapour pressure, p: the equilibrium vapour 
pressure, Tmi and !& are the temperatures of the vapour and the liquid a t  the phase 
interface respectively, and R, is the gas constant of the vapour. The correction factor 
I' is expressed as follows, 

in which 

Energy : 

for the thermal boundary layer near the phase interface; 

~ + ~ ~ + ~ v V . q d V - h  dt J dt (9) 

for the global contents within the bubble. The suffix m represents the mixture, p m  
and pm are the pressure and density of the vapour-gas mixture, urn is the radial 
particle velocity, e the specific internal energy, E the internal energy of the global 
contents of the bubble, h the specific enthalpy of the vapour and J the mechanical 
equivalent of heat. The heat flux q is expressed as follows, 

in which Trh and A, are the temperature and thermal conductivity of the mixture, 
respectively. Equation (9) is the first law of thermodynamics for bulk flow through an 
open system (Hatsopoulos & Keenan 1965). The global contents of the bubble is taken 
here as the open thermodynamic system. 

Equation of state: 
p ,  = p, R, T, for the vapour; 

p ,  = p, R, T, for the noncondensable gas; (11) 

p ,  = pm R, T, for the vapour-gas mixture. (12) 

Here p g  is the pressure of the non-condensable gas, R, and R, are the gas constants of 
the non-condensable gas and the mixture respectively. 
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Continuity : 
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At the phme interface 

[p,(u, - &)]R = - m for the liquid; (13) 

(14) lo,(um - &)IR = - riL for the vapour-gas mixture. 
R is the radius of the bubble, & the bubble wall velocity. 

Momentum : 

where p,, is the pressure in the liquid at the bubble wall, v and p, are the surface ten- 
sion and shear viscosity of the liquid respectively (Hsieh 1965). 

Energy: 
A,. (T), = Am (%) +mL, 

R 

where A, is the thermal conductivity of the liquid, and L the latent heat of evaporation 
or condensation. 

Equilibrium vapour pressure (Clausius-Clapeyron equation) : 

wherePC and are the pressure and temperature at the critical state, for water 218.40 
atm and 647.31 K, respectively. 

Finally, one additional equation is needed, the temperature discontinuity a t  the 
gas-liquid interface (Kennard 1938; Schrage 1953). According to Kogan (1969), this 
discontinuity for the flow of gas inside the Knudsen layer in the neighbourhood of the 
boundary wall is expressed by the following: 

where aT is the thermal accommodation coefficient, P the Prandtl number of the 
mixture, pm the shear viscosity, and K, is the ratio of specific heats. 

2.2. Methods of analysis 

2.2.1. The equation of motion of the liquid surrounding a collapsing bubble. We begin 
this section with a general discussion of the motion of the compressible liquid during 
the bubble collapse. The formulation takes account of the effect of the non-equilibrium 
evaporation and condensation. The authors adopt the PLK method to account for 
liquid compressibility because this procedure is capable of an indefinitely high degree 
of accuracy. Benjamin (1958) fist applied this method to solve the problem of the 
collapsing bubble and later Jahsman (1968) and Tomita & Shima (1977) further 
developed it. As expected, the present solution includes solutions previously obtained 
by these investigators as special cases. 
Let @(r, t )  be the velocity potential for the liquid. Then the continuity equation (1) 

and the momentum equation (2) take the following forms: 
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and 
a@ 1 a 0  2 

at 2 ar 
-+- (-) +SF = const. 

From the equation (4) and the boundary conditions of @ = 0, p ,  = p,, a t  ~ 3 0 3 ,  the 
right-hand side of the equation (20) becomes const. = c&/(n-  1). The sound speed 
c, in the liquid at i n h i t y  is defined as follows: 

where p,, is the liquid density at infinity. Thus, from the equations (4) and (20), we 
obtain the sound speed in the liquid: 

c2 = cz - (n - 1 )  [a@/at + S(a@/ar)2]. (22) 

Therefore, from the equations (19), (20) and (22), we obtain a partial differential 
equation concerning the velocity potential @, 

The boundary conditions are: 
(i) continuity at the phase interface 

= R - m/p,; (24) 

(ii) in the liquid a t  the interface the pressure equation 

(iii) a t  infinity 
@ = O  as r+m; 

The initial conditions are: 

R = Ro 

Now, consider the problem along the outgoing characteristic r ( r , t )  = const. such 
that 

According to the PLK method, we see 

dt = (ul + c)-l dr on 7 = const. (28) 

where 7 is the initial time on the outgoing characteristic and satisfies the condition 
7 = t o n r  = R. 
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(i) First perturbation procedure. The first-order approximation (Dl( = $,, + #l/cm) is 
determined by 

(30)  
P(D, 2 a ~ ,  i a w l  
-+-----= 0, ar2 r ar C: at2 

with the boundary conditions (24) ,  (25)  and (26) .  The appropriate solution can be 
written as follows: 

(31)  f(7) 
@1(r, 7) = --* r 

On the other hand, from equation (28) ,  we obtain 

An unknown function f(7) in equation (31)  can be determined from the boundary 
condition (24)  by using equation (32)  : 

f(7) = R2(R-- m )  -- R 2 [  2 k  ( k-- h )  + R  ( .*  R-- ">1 . 
Pzm Cm Plrn PI00 

(33) 

Therefore, the velocity potential can be written as follows, 

(D1(r,7) = - ' [ . 2 ( k - E ) - g ( 2 k ( k - E )  r + R ~ - E ) ) ] .  (34) 

From equations (24) ,  (25)  and (34) ,  we obtain the equation of motion of the bubble 
with the first-order correction of the liquid compressibility and the effect of non- 
equilibrium evaporation and condensation : 

Here pvc and pet are the densities of the vapour and non-condensable gas a t  the inter- 
face, respectively. The equation (35)  is identical with that obtained by Tomita & 
Shima (1977) in case of ria = pvi k and pvi = const., and furthermore, with equations by 
Herring (1941) and Trilling (1952) in case of m = 0. The familiar result of Rayleigh 
(1917) is also deduced from the equation (35)  for the special case when &/cm + 0 and 
m = 0. 

(ii) Second perturbation procedure. Now, the right-hand side of the equation (23)  is 
obtained from the first-order solution Q1, then the second-order correction $2 is 
determined by 

-+--=-- 
8r2 r ar r7 ' 

(36)  a 2 4 2  2 a42 2f3  

Under the boundary condition r j 2  = 0 at r+w, we have 
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On the other hand, from equation (28 ) ,  we obtain 

An unknown function F(7)  can be determined from the boundary condition (24) by 
using equation (38), 

Thus, we can obtain the solution of <D for the second-order approximation as follows: 

Finally, we obtain the equation of motion of the bubble with the second-order correc- 
tion of the liquid compressibility and the effect of non-equilibrium evaporation or 
condensation : 

Disturbances on the bubble wall propagate through the liquid a t  the sound speed c 
dong the outgoing characteristic (38). 

Equation (41) is exactly accurate to second-order terms of the liquid compressi- 
bility and is, in case of m = pvi k and pvi = const., identical with that obtained by 
Tomita & Shima (1977). Terms with respect to riz in this equation may be significant 
in the final collapsing stage when non-equilibrium evaporation and condensation 
become responsible for the behaviour of vaporous bubbles as well as liquid com- 
pressibility. 

The pressure throughout the liquid can then be found from equations (4), (20) and 
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2.2.2. The temperature of the bubble contents at the interface. We shall now proceed to 
obtain an approximate solution of the equation for thermal boundary layer in the 
internal gas region bounded by the bubble wall (see figure 1). The simple case without 
phase change was fully treated by Flynn (1975a, b ) .  We will apply his method to solve 
the thermal boundary-layer equation under the boundary conditions with phase 
change. We first introduce the modified Lagrangian co-ordinates (z,  t )  related to the 
Eulerian co-ordinates ( r ,  t )  by the following relations: 

where the z co-ordinate is such that z = 0 a t  the centre of the bubble (r = 0) and z = 1 
at the phase interface ( r  = R). The denominator in the above equation measures 
essentially the mass of the fluid contained within the sphere of radius R, and it is a 
time-dependent function when the processes of evaporation, condensation, and 
diffusion take place across the gas-liquid interface. The introduction of these modified 
Lagrangian co-ordinates ( z ,  t )  as the independent variables offers the obvious advan- 
tage of immobilizing the mass of bubble contents. In  terms of z and t ,  equation (8) 
may be transformed to 

where C,, is the specific heat at constant volume of the mixture; and 0 is the function 
defined as follows: 

Here, for convenience, we introduce a function $(z, t )  such that 

Then, equation (44) may be written by integration 

(47) 

in which n( t )  is an arbitrary function of time. From equation (46), 

where the function X ( t )  may be chosen such that 

n( t )  = 0 and $ ( z , O )  = 0, (49) 

if it  is assumed that the temperature at t = 0 is Tm everywhere. We now approximate 
the density pm by 0 / R 3  and introduce a new time variable x defined by 
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Under the assumption that the pressure inside the bubble is uniform throughout, 
eauation (471 becomes 

where u& is the velocity, within the bubble, with respect to x. The right-hand side of 
the equation (51) may be neglected because the factor (r4/R4- 1) is extremely small 
near the interface (r = R) and also a2+/&2 is small inside the bubble ( r  < R). We now 
introduce the assumption that the velocity within the bubble is a linear function of the 
radial (Flynn 1975a, b ) :  

uk= (&LZ).+ Pmi (&LEp, Pmi (52) 

in which &' and m' are the velocity of the bubble wall and the rate of evaporation or 
condensation with respect to x respectively, and the suffix i represents the interface. 
The right-hand side of the equation (52) was obtained by the approximation that 
z (r /R)3.  Thus, from the equation (51) we obtain 

The form of this differential equation permits us to define a new dependent variable 

W(Z, x) = $(z, x) + M X ) ,  (54) 

where 

Then, the equation (53) reduces to 
aw a2w 

ax a22 

W(z ,O)  = 0, 

W(0,  x> = 0, 

-- -- 

with the initial and boundary conditions 

(55) 

and in which 

The appropriate solution of the equation (56) is 

@ l ( X )  = @(XI + T m d X )  - 1 * (60) 

where 9, is a theta function of the first kind defined by 

W 

91[&1 inx] = i ( - l ) n e x p [ - n 2 ( n - ~ ) 2 ~ + i n ( ? 2 - - ) ~ ] .  (62) 
n=--00 

From the equation (61)) we can obtain the gradient of temperature inside the bubble 
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Here, define an auxiliary function hk(z, x) by 

in which 
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h,(z, x) = sin [#2k + 1 )  nz]Hk(x) ( k  = 0, 1 , 2 , 3 ,  ...), 

H k ( x )  = +exp[-a(2k+ l ) 2 ~ z x l ~ ~ e x p [ a ( 2 k + 1 ) 2 n 2 ~ ] ~ d ~ .  

From the equations (50), (55), (60 )  and (65) ,  we obtain 

(64) 

(65 )  

Then, the equation (63 )  may be expressed by the following: 

(67) 

(68)  

--- aTm- 5 (-l)khk(Z,t) 
az cmk=O 

6 -  
or 

In  particular, the temperature gradient of the bubble contents at the phase interface 

18 
(z  = 1) becomes 

= - C ( - l)kH,,(t) sin [4(2k + 1) nz]. c,, k=O 

From the equations (18 )  and (68 ) ,  we obtain the temperature of the bubble contents 
at the interface as follows: 

2.2.3. The temperature at the centre and the pressure of the bubble contents. For sim- 
plicity, we assume the temperature distribution within the bubble to be 

T m = T ,  when O < r < R - 6  

and Tm= Tm$- ( - (r - R )  when 

where Tm is the temperature at the bubble centre; 

R - 6  < r < 

and 6 is the thermal boundary- 

(71)  

As the bubble collapse proceeds, the temperature of the bubble contents tends to 
become spatially uniform (Hickling 1963); the interfacial temperature approaches 
that a t  the centre and the thermal boundary-layer thickness 6 becomes small in com- 
parison with the bubble radius. 

Substituting equation (70 )  into equations ( 5 )  and ( 6 ) ,  and arranging them by using 
the equations of state, (10) and (1  l), we obtain 

and (73 )  
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where 

Here 

Replacing pv and m by p ,  and zero respectively, we can obtain S,, from the equation 
(74) and S,, from equation (75). 

Thus, the equation concerning the temperature at  the bubble centre may be 
obtained from the equations (9), (70), (72) and (73)  in the following form: 

in which K ,  and K ,  are the ratios of specific heats of the vapour and non-condensable 
gas respectively; C,, is the specific heat at constant pressure of the vapour. 

Initial conditions of the equations (72), (73) and (76) axe: 

p v  = p:9 Po = P,, T, = Tmc. (7% (7% (79) 
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2.2.4. The temperature in the liquid at the interface. In  addition to the equation (16) 
we have the following initial and boundary conditions: 

W , O )  = T W ,  (80) 

T,(r,t) = T,, as r+m, (81) 

in which Tm is the liquid temperature at infinity. An approximate solution to the 
problem posed by the equations (3), (16), (go), and (81) was obtained by Plesset & 
Zwick (1 952) under the assumption that appreciable temperature gradients are 
established only in a thin layer surrounding the bubble wall. The zeroth-order solution 
and the first-order correction for the bubble surface temperature T, may be summar- 
ized as follows: 

in which I 

3. Numerical results and discussions 
All physical quantities involving length, time, velocity and so on, may now be made 

dimensionless through the following normalization, primes indicating the dimension- 
less quantities : 

J I  - - J P b  QV % 
P l W  

All the equations are rewritten in dimensionless form, but retain virtually the same 
forms as those without the primes. 

Differential equations (41), (66), (72), (73), and (76) were numerically integrated 
by the Runge-Kutta-Gill method on the digital computer FACOM M-190 in the 
Computing Center, Kyoto University. For comparison with our experimental 
data obtained by the water shock tube, the following initial conditions were 
chosen: R, = 1-Omm, lfW = 293*15K, pica = 0.7025 atm, pm = 0 and O.O1plm atm, 
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Density (water) 
Shear viscosity (water) 

Pz 
Pl 

Shear viscosity (air) Pa 
Shear viscosity (water vapour) P v  

Gas constant (air) R, 
Surface tension (water-saturated vapour) u 

Gas constant (water vapour) 
Thermal conductivity (water) 
Thermal conductivity (air) 
Thermal conductivity (water vapour) 
Thermal diffusivity (water) 
Specific heat (water) 
Specific heat at  constant pressure (air) 
Specific heat at  constant pressure 

Specific heat at constant volume (air) 
(water vapour) 

Specific heat at  constant volume 

Ratio of specific heats (air) 
Ratio of specific heats (water vapour) 

Prandtl number (air) p, 
Prandtl number (water vapour) p, 
Sound speed (water) cm 
Mechanical equivalent of heat J 

c v v  
(water vapour) 

% 
K?J 

Latent heat L 

998-2 
1.022 x 10-4 

7.20 x 10-3 

1.43 x 10-4 

1.86 x lo-'' 
1.28 x 

29.27 
47-08 

6.11 x lo-" 
5.78 x lo-'' 
1.43 x lo-' 
0-998 
0.240 
0.444 

0.171 
0.334 

I .40 
1.33 

585.47 
0.7 1 
1.12 (100 "C) 

1483 
426.8 

TABLE 1. Physical properties (at 1 atm, 20 "C) 

kg m--3 
kg s m--2 
kg s m-2 
kg s m--2 (100 "C) 
kg m-I 
kg m k g '  K-' 
kg m k g l  K-' 
kcal m-l s--l "C-I 
kcal m-1 s-' 'C-l 
kcal m-' s-' "C-I (100 "C) 
mz s-' 
kcal kg-I OC- '  

kcal k g l  OC-' 

kcal k g l  OC-' 

kcal k g l  "C-l 
kcal k g '  OC-' 

kcal kg-1 

m 5-1 
kg m kcal-1 

pea = 0.02305 atm, a, = 0, 0.01, 0.04, 0.1 and 1.0. The water molecule is polar 
and, of course, rather asymmetrical, so that the accommodation coefficient for 
condensation a, could very well be a small number (Knacke & Stranski 1956). 
Alty & Mackay (1935), Hill (1966) and Mori et al. (1973) made experiments for the 
water vapour and concluded that aM E 0.04. Therefore the numerical results are 
shown mainly for the value a, = 0.04. As to the thermal accommodation coefficient, 
the value obtained by Alty (1936) and Hill (1966), aT = 1.0, was adopted in 
this study. The physical properties of water, water vapour, and air are shown in 
table 1. 

Figures 2-8 are concerned with the behaviour of a bubble for p,, = O.O1pl, and 
a, = 0.04. The results are compared with the behaviour of the bubble containing air 
undergoing an adiabatic process and the saturated vapour, which is indicated by 
chained lines with one dot. 

Figure 2 shows the time history of the bubble radius. In  the case in which the 
evaporation and condensation of water vapour and the heat conduction take 
place at the bubble wall, the bubble contracts slowly in the final stages of the collapse in 
comparison with the adiabatic case. The damped ratio of the maximum radius 
P,, of the rebounding bubble, (lRa- Rmaxl/Ro x loo), is 19.4% for thebubble with 
evaporation or condensation and heat conduction, and is 17.2% for the adiabatic 
bubble. The damping of the bubble oscillation is caused by the effects of liquid 
compressibility, evaporation or condensation and heat conduction. 

Figure 3 shows the time histories of the bubble wall velocity V (  = I?) and the 
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FIGURE 2. The time history of the bubble radius. 
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FIGURE 3. The time histories of the bubble-wall velocity and characteristic velocity of 
evaporation or condensation. 

characteristic velocity of evaporation and condensation V,. The latter V ,  is defined by 
the following: 

where pZi is the equilibrium vapour density at  the phase interface. The actual vapour 
pressure within the bubble mainly depends on the relations between V and V,. That is, 
if V > V,, the vapour pressure will increase because of high rates of compression. If 
V ,< V,, the vapour pressure will be kept in an equilibrium state. In  the case of figure 3, 
I Vl is always greater than IKI, and the difference between I VI and IV,l tends to 
increase as the bubble collapses. The wall velocity of the bubble collapsing with 
condensation and heat conduction is slightly low in comparison with the case of 
adiabatic collapse. The vapour still continues to condense during 4.3 ,us immediately 
after the first rebound owing to the non-equilibrium effect of condensation. 
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FIUURE 4. The time histories of the temperaturea of the bubble contents (a) and liquid (b). 

Figure 4 shows the time histories of the temperature of the bubble contents (a)  and 
the liquid (b ) .  In this case, the maximum temperatures at  the centre and at the inter- 
face of bubble are 6700 K and 3413 K respectively. These temperatures are much 
lower than those in the adiabatic collapse (8786 K). The temperature throughout the 
bubble contents is not uniform because of heat conduction at  the interface. The inter- 
facial temperature of the bubble falls to 392.4 K at a time 2 ,us after the first rebound, 
because the bubble rapidly expands. The temperature a t  the bubble centre, on the 
other hand, decreases adiabatically during 11.4 ,us after the rebound, and then it is 
maintained a t  about 870 K. The maximum interfacial temperature of the liquid is 
474 K. The temperature discontinuity a t  the interface increases as the bubble collapse 
proceeds. 
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F ~ a m t ~  5. The time history of the vapour pressure within the bubble. 

Figure 5 shows the time history of the vapour pressure within the bubble. In  this 
case, the maximum vapour pressure pvmax is 144 atm, while the maximum equili- 
brium vapour pressure &,,ax = 15.6 atm. The actual vapour pressure deviates from 
the equilibrium pressure in the final stages of collapse. 

Figure 6 shows the time history of the gas (air) pressure within the bubble. The gas 
pressure almost adiabatically varies, and attains to 848 atm when the bubble 
contracts to its minimum radius. Meanwhile, in the case of adiabatic collapse, the 
maximum gas pressure is 1033 atm. 

Figures 7 (a) and ( 6 )  show the pressure distributions in the liquid before and after the 
collapse of the bubble containing gas and water vapour. The comparison of the result 
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FIGURE 6. The time history of the gas pressure within the bubble. 
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of the resent calculation with the adiabatic collapse (Tomita & Shima 1977) is m de 
for nearly the same bubble radii. In  these figures, dotted lines indicate the pressure 
at  the bubble wall, and dashed lines represent the locus of the instantaneous peak 
pressure. The time is defined in dimensionless form as follows: 
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PImax/plm= 1.4108X lo3 
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FIGURE 7 (h). For legend see facing page. 

where t is the time elapsed from the start of the collapse. In  the early stages of the 
collapse the pressure in liquid is slightly lower than that in the adiabatic case, but in 
the final stages becomes higher than it. The attained maximum impulsive pressures 
are 991 atm for the present calculation and 1033 atm for the adiabatic collapse. 
The pressure in liquid attenuates by the effect of liquid compressibility and, at  the 
instant when the bubble attains its minimum radius, the pressure, at  the position 
r / R ,  = 1, is 13 atm (the same value as in the adiabatic case). Figure 7 ( b )  shows that 
the pressure wave forms and travels outwards into the liquid after the rebound. The 
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FIG- 7. The pressure distributions in liquid (a) before and ( b )  after the collapse of a vapour- 
gas bubble with initial radius R ,  = 1.0 mm: __ , present work; -.-, adiabatic collapse 

pressure front gradually steepens, but the wave attenuates approximately in pro- 
portion to l / r  through the liquid. The peak pressure is lower than that in the adiabatic 
collapse and, a t  the position r / R ,  = 1, 58 atm (in the adiabatic case 63 atm). As a 
whole, present calculations support the earlier work (Hickling & Plesset 1964; Tomita 
& Shima 1977) both in the order of magnitude of the peak pressures and the pressure 
wave attenuation in inverse proportion to distance. 

Figures 8 (a) and (b)  show the pressure distributions in liquid before and after the 
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FIGURE 8 (a). For legend ae0 facing page. 

collapse of a bubble with initial radius R, = 0.1 mm; initial conditions are the same as 
those in figures 2-7. The present bubble collapses to a much smaller radius in compari- 
son with the adiabatic collapse, because the smaller bubbles show increased effects of 
heat conduction; the thermal diffusion length I within the bubbles will be proportional 
to Ri, and the ratio l /R ,  will vary as Ri* (Hickling 1963). This results in a high collapse 
speed and a more violent collapse. The attained maximum impulsive pressure and gas 
temperature at the bubble centre are 2265 atm and 4151 K, respectively. The pres- 
sure is about twice that in the adiabatic collapse, whilst the temperature is about one- 
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gas bubble with initial radius R ,  = 0-1 mm: - , present work; - . -, adiabatic collapse. 
FIGURE 8. The pressure distributions in liquid (a) before and (b) after the collapse of a vapour- 

half of the temperature in that case. During rebound, a stronger pressure wave 
emanates into the liquid and its front steepens when compared with the adiabatic 
case. In fact, Efimov et al. (1976) experimentally demonstrated that bubbles smaller 
than 0.1 mm in diameter collapse in spherical form close to a solid boundary, and that 
the damage by these bubbles is caused by shock waves and accompanied with chemical 
corrosion. 

Figures 9 (a )  and ( b )  similarly show the pressure distributions before and after the 
collapse of a bubble with initial radius R, = 1.0 mm containing only the water vapour. 
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The calculations are performed for the value aM = 0.01. In  this case, the maximum 
impulsive pressure primax is 1291 atm. The pressure at the instant when the bubble 
reaches its minimum radius is 12 atm a t  the position r / R ,  = 1. Meanwhile, the greatest 
pressure a t  the same position after the collapse is 67 atm. In  case of the bubble 
collapsing near the solid boundary, the centre of the bubble approaches the boundary. 
So that the much stronger pressure wave is to be observed at  the position of the bound- 
ary (Kling & Hammitt 1972; Lauterborn & Bolle 1975; Fujikawa & Akamatsu 1975, 
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FIQURE 9. The pressure distributions in liquid (a) before and (b )  after the collapse of a vapour 
bubble with initial radius R ,  = 1.0 mm. 

1978). Here, even a purely vaporous bubble proves to produce a pressure wave at the 
instant of the rebound. The mechanism can be explained as follows; a t  the initial 
stages of the collapse the vapour condenses back into the liquid, so that the vapour 
pressure in the bubble remains equal to a saturated vapour pressure. However, a t  the 
final stages the collapse takes place so rapidly that most of the vapour does not have 
enough time to condense. This remnant of vapour may then be compressed to a high 
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pressure, which will eventually become large enough to halt the inrushing liquid. Then 
the bubble rebounds and the pressure wave radiates into the liquid. 

Table 2 shows the effects of the accommodation coefficient for evaporation and 
condensation on the attained minimum bubble-radius, the maximum pressures and 
temperatures within the bubble and a t  the interface, and the maximum rate of conden- 
sation through the interface. The suffixes min and max represent the minimum and 
maximum values respectively. 

Table 2 (a )  is concerned with a purely vaporous bubble. The values for aAl = 0.04 
are shown in parentheses, because the assumption of thin thermal boundary layer 
may break down. The larger the value of a,, (i.e. the more rapidly the water vapour 
condenses), the smaller the radius to which the bubble collapses. As a whole, the 
attained minimum radius is small compared with the bubble containing the gas- 
vapour mixture. The smaller the radius to which the bubble collapses before the 
rebound, the greater the build-up of inertia in the liquid, and consequently the higher 
the inertial energy stored in the bubble as potential energy and then released to 
produce the stronger pressure wave into the liquid at the instant of rebound. 

Table 2 ( b )  is concerned with a bubble containing both the water vapour and non- 
condensable gas. For a,w = 0.1 the bubble contracts to a much smaller radius com- 
pared with other values of aM, while the interfacial temperature of the bubble con- 
tents T,imax and the impulsive pressureplimax reach the higher values. For aM = 0.04 
the liquid temperature qfimax and the rate of condensation h m a x  a t  the interface are 
maxima respectively. According to the equation (7),  in the case ofp, > p: (i.e. in the 
final collapse stages), the rate of condensation riz is approximately proportional to the 
product of the coefficient aAI and the actual vapour pressure p,,. As shown in the table, 
this value is the largest for aaI = 0-04. The variation in liquid temperature is mainly 
produced by release of the latent condensation heat. The temperature of the bubble 
contents at the centre becomes higher as the coefficient a, increases. A bubble con- 
taining the water vapour and gas seems to collapse not so straightforward as a bubble 
containing only the water vapour. 

4. Experiments 
Extensive experiments on collapsing behaviour of single, twin and triadic bubbles 

near the solid boundary were previously performed in a water shock tube (Fujikawa 
& Akamatsu 1975, 1978). Principal results observed by pressure gauges and high- 
speed photographs can be summarized asfollows: (1)  the water jet does not produce any 
detectable effects; (2) the impulsive pressure is brought about by the shock wave; (3) 
the shock intensity is of the order of lo4 atm, and its duration 2 - 3 ,as. Here, the 
authors will further offer supplemental evidences for these conclusions by means of 
dynamic photoelasticity. 

4.1. Apparatus 
The authors have already given a detailed description of their water shock tube 
(Fujikawa & Akamatsu 1975,1978). So they will explainonly the present experimental 
method. In  the water-filled shock tube, bubbles expand to maximum radii under the 
action of expansion waves, and then collapse under successive compression waves. The 
collapse and rebound of bubbles situated a t  various distances from the solid boundary 
of a photoelastic material are observed by means of photoelastic technique. 
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.Photoelastic specimen 

FIGURE 10. The configuration of the photoelastic specimen relative to  the 
bubble and the pressure gauge. 

Figure 10 shows the configuration of a photoelastic specimen relative to a bubble 
and a pressure gauge. The specimen is fabricated with 12 x 8 mm, 6 mm-thick epoxy 
resin (photoelastic sensitivity: 1.00 mm kg-') of stress wave velocity 2600 m s-l. The 
pressure gauge with high response is flush mounted with the tube wall opposite to the 
photoelastic specimen and is used to detect the instant of arrival of the shock wave 
radiated from the bubble. The distance from the surface of specimen to the pressure 
gauge is just 15-6 mm. Given the speed of sound in water as 1483 m s-l (at 20 "C), i t  
takes 10.57 ps for the shock wave emanating from the bubble to reach the pressure 
gauge; that is, the shock wave is to have been radiated from the bubble, 10.57 ,us before 
theimpulsive pressure is detected by the present pressure gauge. The pulsed organic dye 
laser is employed as a light source with the pulse width of 0 . 3 ~ ~ .  The pressure history 
in the test section and the instant of laser emission are recorded on the same time 
base of the synchronoscope. 

4.2. Experimental results and discussions 

4.2.1. Microjet formation and shock wave radiation. Figure 11 (plate 1) shows typical 
high-speed photographs of a spherical bubble collapsing close to a solid boundary. The 
bubble is produced at a distance L = 1-80 mm from the boundary and reaches a 
maximum radius R, = 0.95 mm; the ratio LIR, = 1.89. Frames are consecutive, and 
follow one another from left to right. The time elapsed from the start of collapse is 
marked under each of the frames. During collapse, the bubble loses spherical symmetry 
by flattening on the bubble wall opposite to the solid boundary. As a result of a higher 
collapse speed of the upper bubble wall, a microjet can be expected to be produced, 
penetrating the bubble towards the boundary; the jet, inside the bubble, is invisible 
because these frames are shadow pictures taken by a Cranz-Shardin camera. The 
funnel-shaped protrusion, visible as a fine dark line, is a secondary effect produced by 
the jet impingement on the lower bubble wall. This is called 'tip' and distinguished 
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from ‘true jet’ (Lauterborn & Bolle 1975). Whether the true jet and the tip can pro- 
duce impulsive pressures will be clarified in $4.2.2.  

Figures 12 (a )  and (b)  (plate 1)  show representative pictures of shock waves radiated 
from bubbles ( a )  close to, or (b)  in contact with, the solid boundary. These results 
clearly demonstrate that the presence of a solid boundary does not inhibit the rebound 
of a vaporous bubble and the resulting shock wave radiation. 

4.2.2. Stress fringes, in the photoelastic material, caused by the bubble collapse. Figures 
13 ( a )  and (b)  (plate 2) show typical high-speed photographs of bubbles in contact with, 
or close to, the solid boundary. The impulsive pressure due to the bubble collapse and 
the signal of laser emission are recorded on each oscillogram. The picture marked with 
the underlined time index was taken by just the timed laser-emission. 

The isochromatic fringe patterns in the specimen due to the stress wave, as shown in 
figure 13 (a ) ,  are originated by the second rebound of the bubble initially in contact 
with the solid boundary. The signal of the impulsive pressure due to the first rebound 
of the bubble triggers, through a variable delay unit, a laser flash lamp so that the 
stress waves due to the second rebound of the bubble are photographed at  any stage 
of their propagation. In particular, the fifth frame shows that the stress-wave propa- 
gates 3.5 mm after its appearance on the specimen. The wave velocity being 2600 m s-l 
in epoxy resin, the present stress wave had been generated on the surface of the photo- 
elastic specimen, 1-34 ,us before this photograph was taken. On the contrary, the 
corresponding oscillogram shows that the laser light was emitted at  the instant that 
1.31 ,us elapsed after the shock wave (second impulsive pressure) radiated from the 
bubble; the time difference between the laser signal and the second impulsive pres- 
sure is 9.26 ,us and it takes 10.57 ,us for the shock wave to reach the pressure gauge 
(figure 10) situated on the opposite wall. The difference in time 0.03 ,us is within the 
limit of experimental error. Therefore, the present stress wave in the specimen proves 
to be caused by the shock wave emanated at the instant of the bubble rebound. It must 
be noted here that no isochromatic fringe patterns are recognized in the specimen 
before the bubble rebounds (second and third frames) although the bubble collapses 
in such a situation that the jet is expected to directly impinge on the bouildary. 
Therefore, the strength of the jet may be inferred to be much less than the shock inten- 
sity. The sensitivity, with respect to the spatial extension, of the specimen may be 
sufficient to detect the impact of the jet, judging from the fact that the stress wave 
caused by a shock wave emanated at  the minute bubble size ( <  0.1 mm in radius 
(Fujikawa & Akamatsu (1978)) can be clearly observed. 

The behaviour of a bubble in the vicinity of the boundary is shown in the figure 
13(b). The bubble is produced at  a distance L = 3.20 mm from the boundary and 
reaches a maximum radius R, = 2.76 mm; the ratio L/R, = 1.16. Even in the present 
situation, very close to the solid boundary the jet, on the upper bubble wall, does not 
directly strike the boundary. During rebound, the bubble approaches the boundary 
forming the tip and finally attaches to the solid surface. The second frame clearly 
indicates that the stress fringes are caused in the photoelastic specimen before the tip 
reaches the surface. These fringes originate from the impact of shock wave radiated 
at  the instant of bubble rebound, as the authors pointed out in their previous papers 
(Fujikawa & Akamatsu 1975, 1978). The shock intensity on the boundary is of the 
order of lo2 atm, from the results in the preceding chapter, provided that the bubble 
collapses in spherical form. 
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From the above observations, we conclude that the impulsive pressure is caused by 
the shock wave radiated into the liquid a t  the instant of the rebound of the collapsing 
bubble, and that the jet impingement does not produce any perceivable effects. 

5. Conclusions 
First, a set of equations has been obtained to predict the dynamical behaviour of a 

cavitation bubble in a liquid. The present formulation takes into account the effects of 
compressibility of the liquid, nonequilibrium condensation of the vapour, heat con- 
duction and temperature discontinuity at the phase interface. 

Secondly, numerical analyses have been made of the effect of non-equilibrium con- 
densation of water vapour in a vapour-gas bubble collapsing in water. It has been 
found that the temperature gradient develops inside the bubble owing to heat con- 
duction through the interface, and that the combinations of the condensing water 
vapour and non-condensable gas have a very strong influence on the behaviour of 
collapsing bubble and the radiated pressure wave. The calculations indicate further 
that a purely vaporous bubble may produce a strong pressure wave in the liquid at the 
instant of the rebound. 

Thirdly, the stress wave, both in a solid and a liquid, due to the collapse of a single 
bubble has been observed in detail by means of the dynamic photoelastic technique. 
The present experimental evidences also support our previous observations that the 
impulsive pressure accompanying the bubble collapse is caused by the shock wave 
radiated into the liquid from the bubble, and that the jet impingement does not pro- 
duce any detectable effects. 

Continuation of the present numerical calculations will reveal the effects of the 
initial bubble radius, liquid temperature, and applied ambient pressure in the liquid 
on the collapse of the cavitation bubble. 

This research was carried out partly with the Grants in Aid for Scientific Research 
of the Ministry of Education in Japan both in 1976 and 1978. The authors wish to 
express their gratitude for these grants. 

Appendix. The thickness of the thermal boundary layer outside 
the bubble wall 

The principal difficulty in the analysis of heavy bubble collapse is that, unlike the 
case of growth, the thickness of the liquid layer cannot in general be taken to be small 
compared with the bubble radius for all times (Plesset &, Prosperetti 1977). 

Let us here estimate approximately the thickness of the liquid layer surrounding the 
bubble wall and also consider an applicable limitation of thermal boundary-layer 
approximation adopted in the present paper. For analytical simplicity, assuming that 
the temperature profile in the liquid layer is a parabolic curve and that the heat con- 
duction inside the bubble is negligible, then the thickness of the liquid layer 8, can be 
expressed as follows (Mitchell 1970; Mitchell & Hammitt 1974): 
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where the notation is the same as used in the body of this paper. Estimating the equa- 
tion (A l )  for a purely vaporous bubble in the final stage of collapse, for example 
with 3, = I mm, R M 0.05 mm, p,(R,)  M 1.7 x lO-5g (3111-3, p,(R) M 9.1 x 10-2g (3111-3, 
qc0 = 293 K, and Ti M 575 K (for aAf = 0.01 in table 2 (a ) ) ,  we obtain 

6,lR M 9 . 0 ~  < 1. 

However, for larger values of a,, this inequality (that is, the assumption (7)) may 
break down because bubbles contract to smaller radii. For aM = 0.04 in table 2 (a) ,  the 
numerical results (in parentheses) are listed for comparison with those for other values 
of aM. Conoerning vapour and gas bubbles as shown in table 2 ( b ) ,  the liquid layer 
thickness is of the order of a few-tenths of the minimum bubble radius. The zero-order 
solution of Plesset & Zwick (1952) may be inadequate to obtain the bubble surface 
temperature. In the present analysis, a first-order correction is made for the zero-order 
solution. Neverthless, in the final stage of the collapse, the bubble wall temperature 
may be estimated larger by a few per cent than an exact solution because the latent 
heat of condensation, in the thermal boundary-layer approximation, is taken to be 
stored only in the thin liquid layer. 
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0 DS 114 126 148 174 194 

FIGURE 11 .  Microjet formation from the bubble in the neighbourhood of the solid boundary. 

(a)  Wall ( b )  Wall 

FIGURE 12. The photographs of the shock waves emanating from the bubbles (a) close to, or (b)  in 
contact with, the solid boundary. 
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